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Laplace asymptotic expansions of conditional Wiener 
integrals and generalised Mehler kernel formulae for 
Hamiltonians on L*(R") 

Ian M Davies and Aubrey Truman7 
t Department of Mathematics and Computer Science, University College of Swansea, 
Singleton Park, Swansea SA2 8PP, U K  

Received 25 November 1983, in final form 15 March 1984 

Abstract. We extend our previous results to derive Laplace asymptotic expansions for 
multi-dimensional conditional Wiener integrals. Applications are given to obtaining gen- 
eralised Mehler kemel formulae, up to arbitrarily high orders in h, for the kemels 
exp(-TH(h)/h)(x,y) and exp(-TH(h, iE)/h)(x,y)  for T>O, where H(h)=(-h2/2)A,+ 
V ( x )  and H ( h ,  B) = 2-'(ihV +2- ' (B A x ) ) ~  + V ( x ) .  Here V E  C"(R3) is a real-valued poten- 
tial which is bounded below together with its Hessian matrix and B is a constant vector. 
We emphasise that these results are valid for non-separable systems. 

1. Introduction 

In a previous paper (Davies and Truman ( I ) ,  1982) we derived generalised Mehler 
kernel formulae for one-dimensional Hamiltonians H ( h )  of the form H ( h )  = 
( -)t2/2)A1 + V ( x )  by means of a Laplace asymptotic expansion for one-dimensional 
conditional Wiener integrals. Following Schilder we required that the functional 
integrand concerned could be written in a specific form and gave rise to a unique 
non-degenerate global maximiser. Subsequently (Davies and Truman (11), 1983) we 
showed how the case of a finite number of non-degenerate global maximisers could 
be handled in an application to Bender-Wu type formulae. Powerful results, related 
to those above, for Gaussian integrals with functional integrands having a manifold 
of extrema have been derived by Ellis and Rosen (1980, 1981, 1984) using abstract 
results of Donsker and Varadhan (1981). These require one to use Lz-norm estimates 
as opposed to our use, following Schilder (1965), of the simpler Lm-norm. We now 
revert to considering a functional integrand which gives rise to a unique global 
maximiser but deal with a multi-dimensional conditional Wiener integral. 

Our first application extends the results of Davies and Truman (I). We obtain a 
generalised Mehler kernel formula, up to arbitrarily high order in h, for the kernel 
exp[- T H ( h ) / h ] ( x ,  y) where H ( h )  = (-h2/2)A3 + V ( x )  in terms of corresponding 
classical mechanical quantities. The potential V E  Cm(R3) is bounded below with its 
Hessian bounded below in the sense of quadratic forms. We may easily deal with 
n-dimensional systems but only work with n = 3 for the sake of clarity. 

The quantum mechanical Hamiltonian HF(h,  B )  for a charged particle of unit mass 
moving in a constant magnetic field, B, can be written as H F ( h ,  B ) =  
2-'(ihV +2- 'B A x)', ( e  = c = 1). A number of authors (Simon 1979, Avron et a1 1978, 
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2774 I M Davies and A Truman 

Feynman and Hibbs 1965) have derived in a variety of ways, the following expression 
for the kernel exp[-tH,(h, B)/h](x, y ) ,  

where the reference frame has been chosen such that B = (0, 0, B) .  One may also derive 
a similar expression for the kernel exp[-tH,(h, iB)/h](x, y )  which, due to the analytic 
continuation in B, does not have a complex exponent. (exp[-tH(h, iB)/h](x, y )  is a 
convenient shorthand for the Green function of equation (1) .  We do not wish to imply 
any analyticity in B by the use of this notation.) This suggests that for some suitable 
class of potentials, V(x), one should be able to derive generalised Mehler kernel 
formulae for differential operators of the form [H,(h, iB) + V(x)]. It is common to 
require that the potential be axially symmetric about the field, B, in problems of this 
type. We, however, do not require this. We obtain a generalised Mehler kernel formula, 
up to arbitrarily high orders in h, for the kernel exp[- TH(h, iB)/h](x, y )  where 
H ( h ,  iB) = 2-’[ihV +2-’(iB A x)]’+ V(x), the real-valued potential V E  C“(R3), 
together with its Hessian, being bounded below and T being sufficiently small. 

For the specific case of V ( x )  = 2-’xTA2x, where A’ is strictly positive definite, we 
calculate the kernel and trace exactly, for all T > 0, giving the spectrum of H in this case. 

We point out that the above results are valid for non-separable systems and 
potentials (in the sense of Stackel). This may better enable one to study the WKB 

quantisation condition for three-dimensional (or multi-dimensional) non-separable 
systems (see Percival (1977) for a short history of the problem). 

We state theorems 1,2, and 3 below together with their attendant conditions but 
their proofs will be contained in later sections. For ease of notation we will only 
consider three-dimensional integrals in theorem 1. For an indication of the refinements 
required in order to obtain the corresponding result, the reader should see Davies 
(1982). In what follows Co[O, TI is the Banach space of continuous functions z : [0, TI + 
R3 with z(0) = z( T )  = 0 equipped with the supremum norm, l / z l l =  sup{iz(t)l: t E [0, TI}, 
where I I is the usual Euclidean norm on R3. Co[O, TI supports the unnormalised 
conditional Wiener measure dpo,o:o,T( z) ,  with covariance 

where 6, is the Kronecker delta and z(  ) has the representation z (  ) =  
(‘z( ), ’ z (  ), 32( )), with mean zero 

For the associated probability measure 
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we use the following notation 
r 

for suitable functionals F. C,*[O, TI is the reproducing kernel Sobolev space associated 
with COCO, TI; z E C,*[O, TI if z E Co[O, TI, I i  E L2(R) and Jz  is absolutely continuous 
for j = I ,  2,3. 

Theorem 1. Let F ( z )  be a real-valued, continuous functional defined on Co[O, TI and 
suppose that the functional ( F (  z )  - 2-I jT i( s) + i( s) ds)  has a unique maximum at 
zo E C,*[O, TI with ( F (  zo) - 2-1 5; &,(s)&,( s)ds)  = b. If F satisfies conditions (1)-(6) 
below then, 

exp(-bA-2)E~[exp{A-2F(Az))]=To+ATI +A2r2+. . . +An-3rn-3+O(An-2),  

as A + 0, where the Ti are conditional Wiener integrals dependent only on the functional 
F and its Frechet derivatives evaluated at zo. 

(i) F ( z )  is measurable. 
(ii) F ( z )  G ( b  + L,) + L211z11*, b,o;o,T AE, where L, and L, are positive real numbers 

with L2 < min{y/2T, 1/ 12T}, y being the constant given in lemma 7. 
(iii) F ( z )  is continuous for llzll Smax{2(Ll + 1)1/2/IL2- 1/2T11/2, [6T(Ll + 

1)/  y]1/2} and upper semi-continuous elsewhere on Co[O, TI. 
(iv) F ( z )  has n 2 3 continuous Frechet derivatives in a ball of radius S centred at 

to in Co[O, TI, S>O. We further assume that the Frechet derivatives D ' F  satisfy 
D F ( z o + q ) ( z ,  z,. . . , z )  =O(Ilzll') if ) I T , I I  < S. The bracket (z, z,. . . , z) contains j argu- 
ments. 

(v) For some E > O ,  for 11q11< 6, E:{exp[(l + E ) D ~ F ( Z ~ + T , ) ( ~ ,  z ) / 2 ] }  is uniformly 
bounded. 

(vi) 'io( ) is of bounded absolute variation on [0, TI. 
Since we can deduce the above result for b # 0 from the corresponding theorem with 
b = 0 by making the substitution F ( z )  + { F ( z )  - b},  we will only prove theorem 1 for 
the case of b = 0. The net effect of increasing the dimension of the functional integral 
in theorem 1 is to restrict slightly the choice of possible integrands. 

Theorem 2. Let H ( h )  be the self-adjoint quantum mechanical Hamiltonian H ( h )  = 
(-h2/2)A3 + V ,  where A3 is the three-dimensional Laplacian and VE Cm(R3) is, together 
with its Hessian, bounded below. Let Xmin denote the unique minimiser of the 
functional 

A(X) = [2- 'X(s)*X(s)  + V(X(s))] ds 5: 
over the space of paths d = {X: [0, TI-, R3(X(0) = x, X (  T )  = y,'X( ) is absolutely con- 
tinuous, j = 1,2,3}. Then for sufficiently small time T > 0, 

exp[ - TH( h) /h] (  x, y ) = (254 T ) - 3 / 2  exp[ -A( Xmin)/R](E f{ exp[h-'F( h'/'z)]}. 

where 

[V(Xmin(s) +z(s)) -  V(Xnin(s)) -DV(Xmin(~>)z(~)l  ds  
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satisfies the conditions of theorem 1 .  Hence for each finite integer n 2 3, 

exP[- TH(h)/hl(x, Y )  

= ( 2 ~ h T ) - ' / ~  exp[-A(Xmin)/h] 

X ( h ' 1 2  loT D'V(Xmin(s))(z(s), ~(s), ~(s)) ds/3!+ . * + h ( n - 3 ) / 2  

.loT D'"-"V(Xmin(s))(z(s),  . . . , z(s)) d s / ( n -  l)!)'] +O(hl"'..')}. 

Given the constant vector B define the rotation matrix R ( s )  E O(3) to be the rotation 
about B through (2-'1B[s) radians, so that R(0)  = I, R T ( s ) R ( s )  = I and k ( s ) R T ( s ) y  = 
2-'B A Y  for any y E W3. Further, define the operator R,( ) by R,( ) H ( x )  = H ( R (  )x) 
for functions H:R3-,R. Also given V E  Cm(W3) let us define ?( , ) by 

?(x, t ) =  V ( R ( t ) x ) - ( B ~ x ) ~ / 8 .  

Theorem 3. Let H ( h ,  B )  be the quantum mechanical Hamiltonian H ( h ,  B )  = 
2-'(ihV + 2 - ' B  A x ) ~  + V(x), where V E  C"(W') is, together with its Hessian, bounded 
below and is sufficiently well behaved to ensure that conditions (*) are satisfied. Let 
Xmin be the unique global minimiser of the functional 

A ( X ) =  [2- 'X(s) .X(s)+  f ( X ( s ) ,  T-s) ]ds  loT 
over the space SI, as defined previously, given that T is sufficiently small for it to exist. 
Define Go(x, y ,  T )  by 

Go(x, y ,  T )  = (277+IT)-'l2 e~p["(X,j,)/h]ET{e~p[h-'F(h'/~~)]}, 
where 

F ( z )  = - [ f(Xmi,( S )  + L( s), T -  S )  - Q(X,j,(s), T - S)  - D?(Xmin( s ), T -  s)z(s)] d s  

satisfies the conditions of theorem 1 ,  and Tis  sufficiently small to ensure that Go(x, y ,  T )  
exists. Then, for each integer n 5 3, 

I: 
exP[- T H ( h ,  iB)/hl(x, Y )  

= R x (  T)Go(x, y ,  T )  

(277+IT)-3/2 exp[-A(Xmjn)/h] 

x [ j = O  k3 (j!)-'E:[exp( 2-' lor D2F(0)zZ ds) 

x(  h'/' loT D3F(0)z3 ds/3! + . . . + h ( n - 3 ) / 2  

D'""'F(O)z"-' ds/(n - 1)!)J] +O(h'"-2)")]), IoT 
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where LYF(0)zj  ds is shorthand for 

Conditions (*), referred to above, will be stated in detail in 9 3 .  

2. The generalised Mehler kernel formula 

In this section we will be concerned with the kernel exp[-TH(h)/h](x, y)  where H ( h )  
is the quantum mechanical Hamiltonian H ( h )  = (-h2/2)A3 + V with V E  C"(R') 
bounded below. We are aiming to express the quantum mechanical Green function 
in terms of corresponding classical mechanical quantities up to arbitrarily high orders 
in h. If the potential, V, is convex, then the quantum mechanical Green function is 
shown to satisfy a generalised Mehler kernel formula for arbitrary finite times T > 0. 
If V is not convex, but has its Hessian bounded below, then we must constrain T to 
be sufficiently small. 

We begin with a result from the direct methods of the calculus of variations. 

Lemma 1 .  Fix x, y E R3 and T > 0. Let the real-valued potential VE C"(R3) be bounded 
below by -Po. Let the functional 

A(z)=  [2-'Z(s)-Z(s) + V(Z(S))] ds 5,' 
be defined for z E d, d being as in the statement of theorem 2. Then A attains its 
global minimum at at least one path Xmin E d, Xmi, is smooth and satisfies the Euler- 
Lagrange equation 

*min( s = v V(Xmin( s ) ) 3 SE[O,  TI. 

Proof. The method of proof is that used by Akhiezer (1962) when considering the 
analagous problem in one dimension. The absolute continuity of Xmin (by component) 
follows by the use of the Cauchy-Schwarz inequality and the fact that the minimising 
subsequence concerned converges uniformly to Xmin. In the next lemma we will obtain 
our basic expression for the kernel exp[- TH(h)/h](x, y). 

Lemma 2. Let the self-adjoint quantum mechanical Hamiltonian H( h )  = (-h2/2)A3 + V 
where the real-valued potential V E  C"(R3) is bounded below. Let the wavefunction 
4 E sP(R3). Then, for each finite T >  0, 

exP[- TH(h)lhI+(x) = I exP[- TH(h)/hl(x, Y ) + ( Y )  dy 

where the kernel is given by 

exp[- TH(h)/h](x, y )  = h-3'2 exp[-A(Xmin)/h] expLh-' F( '"z )I dl*.O,O;O, T (  z )  9 

CdO, TI 

where 

F ( z )  = - [V(Xmin(s) + z ( s ) )  - V(xmin(s)) - DV(Xmin(s))z(s)l ds, IoT 
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Xmin is the global minimiser of A above and b,o:o,T is the unnormalised conditional 
Wiener measure on Co[O, TI. 

Pro05 The proof required here is just the three-dimensional analogue of the proof of 
lemma 2 in Davies and Truman (I). Essentially, one makes use of the Feynman-Kac 
formula, a Cameron-Martin translation formula and the identity 

Ez{F(z)} = 1 d b . O ; z ( T ) , T ( z )  dz( T ) F ( z )  

where E,{ } denotes expectation with respect to Wiener measure. Lemma 2 has the 
following corollary. 

Corollary I. Let H(h) and V be as defined above. Then for A = hl” 

exp[- TH(fi)lfil(x, Y )  

= ( 2  n-h T)-3’2 exp[ -A(Xmin)/ h]E T{exp[ A -*F( Az)]}, 

where F ( z )  is as before and 

F (  z) - 2-I IoT i( s)  i( s) ds = A(X,i,) - A(Xmi, + z), 

for Z E  C,*[O, TI. 

Proof: The first part is obvious and the second part follows after a simple integration 
by parts. 

For us to be able to apply theorem 1 we require the maximum of [A(Xmi,)- 
A(Xmin +z)]  to be unique in C,*[O, TI. By definition of Xmin this maximum will be 
zero and will be uniquely attained at z = 0 iff Xmin is the unique global minimiser of 
A over d. When the Hessian of V is bounded below, in the sense of quadratic forms, 
the next lemma ensures this uniqueness. 

Lemma 3. Let V E  C“(R3) be real valued, bounded below and have its Hessian, V2V, 
satisfy 

VTV2 vr)a - IP21VTr), (T denotes transpose) 

for all r) E R3 and some P 2  E R. Then Xmin, the global minimiser of A over d, is unique 
for sufficiently small T > 0. 

ProoJ: Assume that there are two such global minimisers X, and X,.  Both XI and X2 
are absolutely continuous and satisfy the Euler-Lagrange equation 

X ( s )  =VV(X(s))=DV(X(s)) ,  S E [ O ,  TI. 

z3(s) = DV(X,(s)) -DV(X,(s)), 

If H ( s )  = Xl(s)  - X,(s) then H ( 0 )  = H (  T )  = 0 and 

s E [O, TI. 

Let G( t )  be the real valued function 

G( t )  = V(X,(s) + t H ( s ) ) ,  t E [0, 11. 
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Differentiation quickly yields 

and from these one obtains 

f i ( s ) . H ( s )  = D’V(X,(s) + t H ( s ) ) ( H ( s ) ,  H ( s ) )  dt. Jo’ 
Integrating with respect to s gives, after an integration by parts, 

loT h( s )  - h( s)  ds = - loT lo’ HT(s)V2V(X,(s) + t H ( s ) ) H ( s )  dt  ds. 

The Rayleigh-Ritz quotient bound for the least eigenvalue, A, of the equation 
ii(s) =   AH(^), H ( O )  = H( T )  = o gives us 

IoJ h ( s )  . h ( s )  ds 3 ( 7 ~ /  T)’ H ( s )  . H ( s )  ds. 5: 
Using this inequality and V’VZ- -lp211 gives 

T 

( ~ T / T ) ~ ~ ~ ~ H ( I ) . H ( E ) ~ S ~ ~ ~ , ~  1 0 H ( s ) - H ( s ) d s .  

Thus for T < .nl/321-”2 we have X, = X,. If V were convex, p2 = 0 then X, 
T>O.  

X2 for all 

Proof of Theorem 2. The majority of the work required to prove theorem 2 has been 
carried out in proving lemmas 1, 2, and 3 and corollary 1. We need only prove that 
the functional F ( z )  satisfies conditions (1)-(6) of theorem 1. Note that we already 
require T < 7~1/3~1-’/~. Conditions ( I ) ,  (3), (4) and (6) are easy to check since F is well 
behaved. Condition (2) demands that F ( z )  c LI + L , ) I z ~ ~ ~  for some positive Ll and L2. 
Recall that 

F ( z )  = - [V(Xmin(s) +z(s))- V(X,in(s))-DV(X(s))~(s)l ds. JOT 
Using the method employed in the previous lemma with G( t )  = V(Xmin( s)  + tz( s)) this 
time, we get 

F ( z ) s  lP2lTIIz1I2/2= L * l l Z l 1 2 ~  say* 

We must have L, < min{ y / 2 T ,  1/  12T) and so we require T 2  < min{y/Ip,l, 1/61p21}. To 
satisfy condition ( 5 )  we constrain T to be strictly less than (2y / l p2 I ) ’ ” .  Collating all 
the upper bounds for T we finally have that theorem 2 is valid for T < (61/321)-”2, ( y  
being $). 

The final identity of theorem 2 follows from the final part of the proof of theorem 1. 
The following corollary will explicitly show how we connect the result of theorem 2 

with a generalised Mehler formula for the kernel exp(-TH(h)/h)(x, y ) .  
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Corollary 2. Let H(fi) and V be defined as in the statement of theorem 2. Then setting 
A(&,) = A(x, y ,  T )  we have, for sufficiently small T, 

exp(- TH(fi)/fi)(x, Y )  

= (2?rh)-3/2 exp[-A(x, y ,  T)/fi]I-a2A(x,y, T ) / a ~ ' 8 y ~ ( l ' ~ [ l  +fiK, +0(fi2)], 

where 1 I represents the determinant and K I  may be explicitly evaluated in terms of 
the Frechet derivatives of V of order less than six and G(a, t )  (the Feynman-Green 
function) the Green function of the Sturm-Liouville differential operator {[(dz/da2) - 
VjVkV(Xmi,( a))]} with Dirichlet boundary conditions. 

Proof: The proof of this result depends on the identity 

T-'/'E:[ exp( i =  I a i - z . ( s i ) )  exp( -2-I loT D2V(Xmin(s ) ) ( z (s ) ,  z(s)) ds)] 

This identity is proved in exactly the same manner as the analagous one-dimensional 
result in Davies and Truman (I) ,  and we will not prove it herein. We do not give K ,  
explicitly as for general V it involves some unpleasant combinatorics. The necessary 
combinatorics for the one-dimensional result may be found in Davies (1982). We point 
out, however, that for a given potential V the calculation of K ,  is straightforward, if 
tedious. 

3. A generalised Mehler kernel formula for Zeeman-effect Hamiltonians 

By using similar results to those contained in the previous section we now 
show how to obtain an asymptotic expansion, in powers of fi, for the kernel 
exp[- TH(fi, iB)/fi](x, y )  where H(fi, iB) is the quantum mechanical Hamiltonian 
H(fi, iB) = 2-'(ifiV +2-'iB A x)'+ V, with V E  C"(R) bounded below. We begin with 
a short description of the motivation behind our method. 

For a charged particle moving in a constant magnetic field B subject to some 
external potential V ,  the quantum mechanical Hamiltonian of the system is H(fi, B )  = 
2-'(ifiV +2- 'B A x)'+ V ( x ) ,  where V E  9'(R3) say. We may express this Hamiltonian 
in the form H ( h ,  B )  = (-fi2/2)A3 + ( B  A x)'/8 +2-'L.B, where Lis  the angular momen- 
tum operator L = -ifi(x A V ) .  If we assume that V is axially symmetric about B and 
that the spectral projections of L . B  commute with the spectral projections of Ho(fi, B )  = 
(-fi2/2)A3 + ( B  A x)*/8 + V ( x )  then, assuming that the domains are reasonable, we have 

exp[-itH(fi, B ) /  fi] = exp[-i tH,( fi, B)/fi] exp[-i t (  L -  B)/2fi]. 

The effect of exp[-it(L.B)/2fi] is just a rotation of axes through lBlt/2 radians about 
B. Hence for $E 9'(W3), we may write, 

exp[-itH(fi, B)/fi]$(x) = exp[-itHo(fi, B)/h]$(R( t ) x )  

where R is the matrix that was defined immediately preceeding the statement of 
theorem 3. This all suggests that a rotation of axes may simplify the evaluation of the 
kernel exp[- TH(fi, iB)/h](x, y ) .  
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The diffusion equation corresponding to this kernel is 

h au /a t  = [(R2/2)h3 + ( B  A ~ ) ~ / 8  - ~ ( x )  + 2 - ' h ~ . ( x  A v)]u, (1 )  

where U = u ( x ,  t ) .  We will not require V to be axially symmetric about B or V E sP(R3). 
The requirements on V and its derivatives will be given shortly. Let y = R( t ) x  and set 

U"(y, t ) =  u (RT( t ) y ,  t ) = u ( x ,  t ) .  

R aU"/at = [ ( ~ ' / ~ ) A , + ( B A Y ) ' / ~ -  v(~~( t )y ) ]U" .  ( 2 )  

Changing independent variables to y, we derive the diffusion equation for U" 

If we had chosen V to be axially symmetric about B then the above equation would 
have been considerably simplified. For convenience we reintroduce p(x, t )  = 
V ( R T (  t ) x )  - ( B  A ~ ) ~ / 8 .  Following Tingley (1956) the solution of the above diffusion 
equation is 

f ( ~ + h " ~ z ( s ) ,  t - s )  ds U"(~+hl '~z( t ) ,O) , t <  tm, 1 
where Ez{ } denotes expectation with respect to Wiener measure. Note that the second 
argument of p is ( t - s )  and not s. We require p and U' to satisfy the following 

3 

- F(x, t )  s c, + D1,xf 
j =  I 

( i)  

3 

C(x, 0) exp - c djxf E L1(R3), ( j = l  1 (iii) 

where CI ,  C2, Dlj, D2j_and dj are non-negative constants for j = 1,2,3. We denote the 
above conditions on V as conditions (*). In what follows we choose ;E C2(R3) and 
so we may neglect condition (3). Let t ,  = t,( 9 )  satisfy the inequalities: 

DIj +(h772/t,)D2j < (h7r/4tm)', j =  l ,2 ,3 .  

We now proceed in a similar manner to the previous section. Without loss of generality 
we may set B = (O,O,  E). 

Lemma 4. Fix x, y E R3 and T > 0. Let the real-valued potential V E Cm(R3) be bounded 
below by -PI. Let the functional 

l-T 

A(X) = J [2- 'X(s).X(s)+ F(X(s) ,  T-s)]  ds, 
0 

be defined on the space d where d={X:[O, T ] + R 3 r X (  ) is absolutely continuous, 
j = l 1 2 , 3 , X ( 0 ) = x , X ( T ) = y } .  As above p(x, t ) =  V ( R T ( t ) x ) - ( B ~ x ) 2 / 8  with B =  
(0, 0, E). Then, for sufficiently small time T >  0, the functional A attains its global 
minimum at at least one path Xmine d with Xmin smooth and satisfying the 
Euler-Lagrange equation 

*,in( S )  = R( T - S ) v  v(  RT( T - S)Xmin( S ) )  -k B A ( B  A x,in( S)) /4 ,  s E [O, TI, 

Xmin(0) = x, Xmin( T )  = Y. 
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Proof: If we can bound A below in the manner 

A ( X ) a a  /oTX(s)-X(s)ds+.$ a>o,  

the problem is solved since we can then mimic the proof of lemma 1. Now, 

A( X )  = 2-' loT X( s) - X( s) ds  + loT { V[ RT( T - s)X( s)] - [ B  A X( s)I2/ 8} ds  

3 2 - I  loT X ( s ) * X ( s )  ds - ( B A  X ( S ) ) ~ / ~  d s - p l T .  5: 
Using the norm inequality 

A(X)3(2- ' -B2T2( l  +21~1)/8) J X ( s ) * X ( s )  ds+(,  say. 
0 

For T<2/(B1(1 + 2 1 ~ ) ) ' / ~  we have the required inequality. The result now follows as 
in lemma 1. 

Lemma 5. Let H ( h ,  B )  be the quantum mechanical Hamiltonian H ( h ,  B )  = 
2-'(ihV +2- 'B A x)'+ V ( x )  where V E  C"(R3) is such that 0 satisfies conditions (*). 
Let +h E C0(R3). For sufficiently small time T > 0, the kernel 

ex~[-TH(h,iB)/hl(x,~)=R,(T)Go(x,~, T )  
where Go(x, y ,  T )  is the Green function for equation (2). Furthermore, Go(x, y , T )  is 
given by 

~ o ( x ,  Y,  T )  = h-3'2 exp[-~(xmin) /h l l  exp[h-'F(h1/2z)l) dA,o:o, T ( Z l r  
C d O ,  TI 

where 

Xmin is the global minimiser of A over d and b,o:o,T denotes the unnormalised 
conditional Wiener measure on Co[O, TI. 

Proof: We have that 

which leads to 
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for T < t,. The remainder of the lemma is now a consequence of lemma 2. As in the 
preceding section the maximiser of [A(Xmi,) - A(Xmi, +z)]  is required to be unique in 
C,*[O, TI. By definition of Xmin this maximum is zero and will be attained uniquely 
at z = 0 if and only if Xmin is the unique global minimiser of A over Op. If the Hessian 
of V is bounded below, then we show that Xmin is unique for sufficiently small time T. 

Lemma 6. Let V E  C“(R3) be such that ? satisfies conditions (*) and let p3 E R be 
such that V 2 ? a  -lp31Z, I being the identity. Then, Xmin, the global minimiser of 

A ( X ) =  [ ~ - ‘ X ( S ) . X ( S ) +  ?(X(S), T - s ) ] ~ s  I: 
over Op is unique for T < 7 ~ (  [p31 + B2/4)-’/’. 

ProoJ: Defining H ( s )  = X,(s)-X,(s) where X, and X2 are both global minimisers of 
A over OP one first shows that 

lor fi( s ) . fi( s ) ds s (I p31 + B2/ 4) H (  s ) - H (  s ) ds 5: 
by using the method of lemma3. It quickly follows that Xmin is unique for T <  
41p3(  + ~ ~ / 4 ) - ’ / ~ .  

Proof of Theorem 3. The proof of theorem 3 is no different in spirit from the proof of 
theorem 2. The work required to set the result of theorem 3 within the framework of 
theorem2 has been carried out in the preceeding three lemmas. The statement of 
theorem 3 is valid if the time T is bounded above by min([6/(lP3( +B2/4)”*, t,( ?I}. 

We state the following corollary without proof. 

Corollary 3. Let H and V be as defined in the hypothesis of theorem3. Setting 
A(X,,,) = A(x, y ,  T )  we have for T sufficiently small 

exp[-TH(h, iE)/h](x, y )  = ( 2 d p 2 R , (  T )  

x{exp[-A(x, Y ,  ~)/hI l~(o)I- ’” [1 + R K ,  +0(h2)I} ,  
where IJ(0)l  denotes the modulus of the determinant of J ( 0 ) .  J (  ) is the matrix which 
satisfies 

j ( s )  ={R(T-s)V2V(RT(T-S)Xmi,(S))R=(T-S)-B*I/4}J(s), s E to, TI, 

with J( T )  = Oand j (  T )  = I. K ,  may be determined in terms ofthe Frechet derivatives of V 
and the Green function of the above equation which satisfies Dirichlet boundary 
conditions. 

Once again we emphasise that we do not require the system under consideration 
to be separable. 

Example 

H ( h ,  E )  = 2-’(ihV + T I E  A x)’ +2-’xTA2x 

For the above H, A’ being a strictly positive definite quadratic form, we will now 
calculate the kernel exp[-TH(h, iB)/h](x, y )  and use it to determine the spectrum of 
H ( h ,  E ) .  Without loss we may take A2to be diagonal, but we now have to accommodate 
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any Bc(W3. This specific form of V allows us to improve upon lemma6 and prove 
that the minimiser of the functional A( ) over d is unique for all but a discrete series 
of times in T > 0. 

The kernel exp[-TH(h, iB)/h](x,y) is given by 

( 2 d ) - 3 / 2 R , (  T){exp[-A(x, y, T)/h]l- d2A(x, y, T)/dx' aykll'2}.  

We must calculate A(x, y,T)= A(Xmi,) and Xmin. In this particular example it is 
easier to perform the necessary calculations in the unrotated, original frame of reference. 
Defining Y( s) = RT( T - s)Xmin( s) we must solve 

Y ( s )  5 SY(s)  +A'Y(s), Y ( 0 )  = RT( T)x ,  Y( T )  = Y, 

where BY(s)  = B A Y ( s ) .  If we define the time-dependent matrices E, F, G, and H by 

then Y ( s )  = E ( s )  Y(0) + F ( s ) F - ' (  T)[y - E (  T )  Y(O)], F (  T )  being invertible for all save 
a discrete series of times T, and 

A(x, Y, T )  = 2-'[y * [G( T )  Y(0) + H ( T ) F - l (  T)[Y - E (  T )  Y(0)ll 

- Y(0) * [ F - ' (  m y  - E (  T )  Y(0)111. 

The determinant ld2A(x, y, T) /dx 'dyk l  is simply 

/2-'[G( T )  - H( T ) F - ' (  T ) E (  T )  - [ F - l (  T)]']1. 

One may show that F ( - s )  = [ G ( s ) - H ( s ) F - ' ( s ) E ( s ) ] - '  and that F ( - s )  = -FT(s) (see 
appendix). This leads to 

I-d2A(x, y, T ) / ~ x '  dykl = IF-'( T)I. 

Since the above determinant is independent of x, the operator R,(T) acts only on 
exp[-A(x, y, T)/h] giving 

exp[-A(R,(T)x, x, T)/h]=exp{-x*[G(T) + ( H ( T ) - I ) F - ' ( T ) ( I - E ( T ) ) ] x / 2 h } .  

To calculate the trace we must evaluate the integral 

J exp[-h-'A(R,( T)x, x, T)]dx 
R3 

which by the above is simply 

( 2 . n h ) 3 / 2 1 ~ ( ~ )  + ( H ( T ) -  z ) F - ~ ( T ) ( z - ~ ( T ) ) ~ - ~ ~ ~  

It is, however, easy to show that 

E ( T ) - I  F ( T )  
G(T) H ( T ) - I  

IG(T) + ( H ( T ) - I ) F - ' ( T ) ( Z - E ( T ) ) I =  -lF-'(T)l  1 
This determinant will be positive if A' is strictly positive definite. Thus, upon combina- 
tion of the necessary terms, we have 

E ( T ) - I  F ( T )  I 1  G ( T )  H ( T ) - I  
Tr{exp[-TH(h, iB)/h]} = - 
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Let a;, af and a: be the positive roots of the equation 

( a ; -  & ) ( a : -  a ) ( &  a )  = a[s:a: +B:a:+B:a: -  alB(2] 

where B = ( E , ,  B2, B 3 )  and A'= diag(a:, a:, a:). Then 

Tr{exp[-TH(h, iB)/h]} = n [(e-=JT- 1)(1 -e-aJT)]-"2 
j = l  

2785 

By analytically continuing, we conclude that the eigenvalues of H ( h ,  B )  are 

E,,,,,, =h[( l+4)a1  + ( m + f ) a 2 + ( n + $ ) a 3 ] ,  1, m, n ~ h + .  

This seems to be a new result. 

4. Preliminary lemmas and proof of theorem 1 

The lemmas contained in this section are the three-dimensional analogues of those in 
Davies and Truman ( I ) .  We will state all the lemmas required for the proof of theorem 1 
but in their proofs, if given, we will only describe any supplementary technical detail 
necessary to carry the proof through in three dimensions. The following lemma is one 
of the three critical estimates which we require. 

Let xA be the characteristic function of the set A. We will sometimes abuse notation 
by writing E:{xA} = Ef{A}. 

Lemma 7. For some fixed constants c, y > 0, 

~T{/lzI1> a } s c  exp(-ya2/T). 

Roo$ If ( / z ( I  > a then at least one of the following must be valid also: 

I I I Z I I  > a/J3,  l12zlI > a/J3,  113z1( > a / J 3 .  

Thus 

~ : { l l z l l >  a ) s ~ f { l l l z l l >  a / J 3  or 112z1) > a / J 3  or 113z1) > a / & }  

- w z I l >  a /J3 } ,  

where we have used the probabilistic result 

Prob(Au B u  C) =Prob(A)+Prob(B) +Prob(C)-Prob(AnB)-Prob(An C )  

-Prob(Bn C ) + P r o b ( A n B n C ) .  

From Davies and Truman (11) we have E f {  llzll> a ' }  < 2 exp( -2a'*/ T )  and so 

E:{l(z~/>a}s8exp(-2a2/3T).  

Let z E Co[O, TI, then we define the n-polygonalisation of z, z " (  ), by 

z"(x) = e( j T / n )  + ( n /  T ) ( s  - jT/n){z[(j  + 1 )  T / n ]  - z(jT/n)}, 

jT/n s s s ( j  + 1)T/n, 
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for j = O ,  1,2 , .  . . , n - 1. Let z f = z n ( j T / n )  for j = O ,  1, .  . . , n. We also define the 
associated 'vector' Jzn  by j z n  = (Jzy ,  Jz,", . . . , ' z : ) ;  note that Jz:  = 0 for j = 1,2,3. 

Lemma 8. If 

Proof: Similar to that of lemma 6 in Davies and Truman (I) .  We now state the second 
of our three important lemmas. 

Lemma 9. Let m be a positive integer, then for S > 0, 

E ~ ( ~ ~ z - z " ' (  )I1 > S ) <  D exp(-mS2/24T), D a positive constant. 

Proof: Use the same method as lemma 7 initially and then refer to lemma 8 of Davies 
and Truman (11). 

Lemma 10. For k, I~jW,[Ef[exp(k//zJ/ '+I//zII)]<cr, for all I and k <  y / T ,  y as in 
lemma 4. 

Proof: See lemma 9 of Davies and Truman (11). 

Lemma 11. Let A, be the n x n tridiagonal matrix 

2 -1 
-1 2 -1 

( n /  T) 
-1 2 -1 

-1 1 

Then for k ~ n  an n-dimensional vector 

( )T is transpose, we postulate that 

Io' [dks"(~)/d7] '  d r  = k ~ n A n ( k ~ n ) T  

and 

' z " A ~ ( ' z " ) ~ ~  ['2(7)12 d7, j =  l ,2 ,3 .  IoT 
k s " ( t )  is that one-dimensional polygonal path which has k ~ n  as its associated 
n-dimensional vector. 

Proof: See lemma 4 of Schilder. 
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Lemma 12. If z E C,*[O, TI then for s2>  s, 

Proof: Use the triangle inequality and see lemma 5 of Schilder. 

Let us define the function A(S) by 

A ( S ) = s u p  L E  A6 ( F ( z ) - 2 - '  I O T i ( s ) - Z ( s ) d s )  

where 

A8 = It E C,*[O, TI1 IIZ - z o l l ~  6 } ,  for 6 > 0. 

Lemma 13. Suppose F ( z )  satisfies the conditions given in the hypothesis of theorem 1, 
then A( 8) < 0 for S > 0. 

Proof: See lemma 6 of Schilder. 

Lemma 14. If lis"( ) - zG( ) / I  3 w and w - 6, > 0 then 

z:( ) is the n-polygonalisation of z,,. 

Proof. Similar to that of lemma 7 of Schilder. 

Lemma 15. Let A, be the n X n matrix given in lemma 11. Then if w n  is any n- 
dimensional vector 

w"A,( W " ) ~ S  T-I /[U''  112, / I  llco being the sup-norm on R3. 

Proof. See lemma 13 in Davies and Truman (I) .  

Let x ( p ,  y ,  z ) ,  p (  E R) > 0 be the characteristic function of the set { z  E Co[O, TI1 IIy - z/l 
p } .  The next lemma is the last of our crucial estimates. 

Lemma 16. Let F ( z )  be as given in the hypothesis of theorem 1 and let S > O .  Then 
for A sufficiently small, 

I ( A )  = E:{[l -x(S/A, zo/h, z)]  exp[K'F(Az)]} = O[exp(c~A-~)] 

for some a < 0. 

Proof. As in the proof of lemma 14 in Davies and Truman ( I )  we proceed by splitting 
I ( A )  into three distinct parts 1 2 ( A ) ,  13(A) and 1 4 ( A ) .  We deal with I , ( A )  and 1 4 ( A )  in 
exactly the same manner as in Davies and Truman (I). 1 3 ( A ) ,  however, must be treated 
with slightly more care as the finite dimensional Lebesgue integral required for the 
upper bound on 1 3 ( A )  is now of dimension 3(n - 1 )  and the integration takes place 
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over a more complicated subspace of R3("-". In essence, though, the method of proof 
is the same. 

Lemma 17. If io( s) is of bounded variation on [0, TI and if 

{orf(s).y(s)ds- &(s)-dy(s)=O, f e  L2[0, TI, fora l lye  C,*[O, TI, 

then 

I: 
J f ( s ) . y ( s )ds -  J &(s).dy(s)=O fOrAEYE Co[O, TI. 
0 0 

Proof: Similar to that of lemma 15 in Davies and Truman (I). 

Proofoftheorem 1 .  The proof of theorem 1 follows the corresponding proof in Davies 
and Truman (I). We merely draw on the three-dimensional versions of the lemmas 
and technical results required. In general, the net effect of extending our original result 
of Davies and Truman ( 1 )  to accommodate functionals of paths in R3 is to reduce the 
maximum time, T, for which the result is valid. 
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Appendix 

The matrices E ( s ) ,  F ( s ) ,  G(s) and H ( s )  were defined by 

Define the matrices E ( s ) ,  P ( s ) ,  G(s), and H ( s )  by 

E ( s )  P(s) 

= [E;;; ;;))]-', if it exists. 

By inverting the E, F, G, H matrix we get 

F(s) = (G(s) - H ( S ) F - ~ ( ~ ) E ( ~ ) ) - ' .  

F ( s )  satisfies the differential equation 

E ( s )  = A 2 F ( s )  - SP(s), f ( 0 )  = 0, P(0) = - I .  
However, F satisfies the differential equation 

E(s) = F ( S ) A ~  + P ( s ) B ,  F ( O )  = 0, P(o) = z, 
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and upon taking the transpose of the above we get 

F'(s) = A2FT(s) - BkT(s), FT(0) = O ,  k'(0) = I.  

The above yields 

F ( s )  = -FT(s ) ,  

giving us the required result. 
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